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ABSTRACT
Four time-series machine learning models were used on our data:
exponential smoothing, ARIMA, SARIMA, and LSTM. The season-
ality of the data was represented best by Holt-Winter’s seasonal
extension to exponential smoothing and the seasonality captured in
SARIMA. The ARIMA model failed to determine a pattern and suf-
fered from underfitting. The LSTMmodel had issues generalizing to
the test set and resulted in poor performance on our data. The best
fit model to our data was SARIMA, achieving the lowest median
absolute error of all the considered machine learning models.

1 INTRODUCTION
The recent frequency of climate issues has risen, and with this
topical issue is the concern of droughts. Every summer season in
the New York area comes with the possibility of water sparseness.
Often, water restrictions must be invoked, causing civil unrest and
raising concerns over whether or not the constraints are of an ap-
propriate scale. Our project forecasts water consumption so that
civilians have more time to prepare for water restrictions. Addition-
ally, our prediction software could provide insight regarding the
most suitable magnitude of restrictions.

2 PRELIMINARIES
2.1 Time Series Machine Learning
The opportunity to apply time series machine learning presents it-
self when there exist discrete quantities occurring over time. Based
on the previously observed values, a prediction can be made. Differ-
ent time series machine learning models consider different aspects
of the time series data but are able to provide a prediction. Fore-
casting a prediction at time t entails estimating a value at 𝑡 +ℎ with
only the information available at 𝑡 .

Many of the most popular time series machine learning utilize
supervised learning by continuously partitioning a data set into
training and testing data. A prediction can be made by the model
within a known time span. The prediction can then be tested against
the ground truth yielding an error that can be minimized.

2.2 Autoregressive Models
An autoregressive model (or AR model) is a model commonly ap-
plied in the analysis of time-series data. An AR model is without
latent variables: all variables are directly observed rather than in-
ferred. In an AR model, each predicted element 𝑥𝑖 in a data vector𝑋
is based on other elements in the same data vector 𝑋 . An AR model
of order k may predict a new data point 𝑥𝑡 given 𝑥𝑡−1, 𝑥𝑡−2, ..., 𝑥𝑡−𝑘 .
As shown by the formula, the order k gives the number of immedi-
ately preceding values to consider in determining the next number
[3].

3 EXPLORATORY DATA ANALYSIS
Our dataset, shown in Figure 1, includes water consumption statis-
tics in Hundred Cubic Feet (HCF) for the New York City boroughs:

Figure 1: New York water consumption data over six years,
eight months.

the Bronx, Brooklyn, Manhattan, Queens, Staten Island, and the
Federal Housing Administration (FHA). Further, from the water
consumption of the boroughs, New York City’s water consumption
is derived. The sequence of water consumption data ranges from
2013-06-23 to 2020-03-11.

A rough seasonal pattern can be observed. Summers in New York
render a high water consumption before falling again during the
winter. In July of 2019, an abnormally large spike in water consump-
tion reveals itself in Manhattan. With further research, a leading
explanation suggests the spike may be the result of distinguishing
a fire that left 73,000 civilians without power in Manhattan [2]. The
data in its entirety represents neither a positive nor negative over-
arching trend. From the observable patterns in the data, seasonality
will play a role in the prediction of future dates.

4 APPLYING MACHINE LEARNING MODELS
Different machine learning models forecast values with varying de-
grees of accuracy. Themodels evaluated against the New Yorkwater
consumption data are exponential smoothing, ARIMA, SARIMA,
and LSTM. Exponential smoothing and ARIMA were selected as
they are among the most widely used approaches to time series
forecasting. SARIMA (Seasonal ARIMA) is an extension of ARIMA
and adds a linear combination of seasonal past values or forecast
errors. An LSTMmodel was additionally selected to be evaluated as
it serves as a state-of-the-art model regarding time series machine
learning.
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4.1 Exponential Smoothing
The variant of exponential smoothing we used in the forecast-
ing of our data was the Holt-Winters’ seasonal method. The data
is known to possess seasonal qualities. So, the inclusion of the
seasonal component 𝑠𝑡 and a seasonality frequency m allowed
for a more accurate prediction. Exponential smoothing generally
makes predictions using the linear weighted sum of the most re-
cent observations; however, where exponential smoothing branches
from ARIMA models is in the weights. The weights of exponential
smoothing models decrease exponentially as observations are fur-
ther in the past. Exponential smoothing models put an emphasis
on more recent observations compared to old ones.

4.2 ARIMA and SARIMA
AutoRegressive Integrated Moving Average (ARIMA) is a form of
regression analysis that considers the differences between values
in a series. ARIMA is an autoregressive model, meaning it forecasts
values corresponding to a linear combination of the variable’s past
values. The model is integrated as it may differ the raw observations
to allow the time series to become stationary. That is: a stationary
time series is void of trends and seasonality. The model additionally
has a moving average which corresponds to a linear combination
of past forecast errors.

ARIMA allows for three parameters to be tuned: 𝑝 , 𝑑 , and 𝑞 [1].
The parameter 𝑝 is the number of lag observations in the model
to consider. The parameter d determines the number of times raw
observations are differenced. The parameter 𝑞 represents the size
of the moving average window. Using grid search, optimal values
of 2, 1, and 0 were found for 𝑝 , 𝑑 , and 𝑞 respectively.

Seasonal AutoRegressive Integrated Moving Average (SARIMA)
shares all the qualities ARIMA does; however, SARIMA adds a linear
combination of seasonal past values or forecast errors [4].

The inclusion of seasonal consideration brings with it four addi-
tional parameters: 𝑃 , 𝐷 , 𝑄 , and 𝑠 . The parameters 𝑃 , 𝐷 , and 𝑄 are
seasonal equivalents of their corresponding lower-case parameters
found in the ARIMA model. The fourth additional parameter s is
the length of a cycle. The New York water consumption data has a
seasonal cycle length (𝑠) of 12 months—the cyclic pattern repeats
every year. Using grid search, optimal values for 𝑃 , 𝐷 , and 𝑄 were
found to be 0, 1, and 1 respectively.

4.3 LSTM
Long Short Term Memory Networks (LSTM Networks) extend re-
current neural networks (RNNs). RNNs differ from traditional feed-
forward networks by how the input neurons take in data. In tra-
ditional networks, input neurons are set directly and propagated
forwards through the network. Recurrent networks, however, feed
their intermediate or final outputs back into their inputs. By effect,
RNNs form an internal state or memory. A shortcoming of recurrent
networks is their tendency to forget long-term knowledge. LSTM
networks branch from RNNs and add functionality for recalling
long-term patterns, as well as short-term ones.

To improve the performance of the LSTM network, hyperpa-
rameters including lookback, batch size, and LSTM units were
hand-tuned. Lookback is the number of immediately previous ob-
servations considered by the network. The batch size corresponds

to the number of samples trained for each step, and LSTM units
are neurons. A neuron in an LSTM network is composed of a cell,
and an input, an output, and a forget gate. The cell is responsible
for remembering values over arbitrary time intervals and gates
determine information retention.

With the lookback parameter tuned to 4, hidden units totalling 6,
and training with 100 epochs, the LSTM network rendered its best
performance. Increasing the number of units comes with a steep
fall from the initial loss rate; however, after the steep fall, varying
the number of neurons alone did not result in learning past the
first 5 epochs. The loss curve plateaus after only a few iterations of
the training data indicating overfitting. Increasing the look-back
parameter resulted in a slower and more gradual descent in loss.
To fit the model, 100 epochs were run on the LSTM network before
a persisting plateau was observed.

5 EVALUATION

Table 1: Error Statistics on Test Data

Model Mean AE Median AE RMS

Holts-Winter 31465.83 5352.43 96374.67
ARIMA 37282.08 10202.17 105706.43
SARIMA 34887.35 4535.55 103371.30

LSTM 65684.11 18488.60 129717.00

To compare different models, the same data was used, partition-
ing training and testing data equivalently. The time span of the
training data ranged from the earliest observation, being in June
of 2013, to October of 2018. The period of our training data repre-
sented approximately 80% of the total data, leaving the remaining
20%—November 2018 to February 2020—as testing data.

To determine what model performed the best, mean absolute er-
ror, median absolute error, and root-mean-square error (RMS error)
were recorded and contrasted for each model Table 1. The median
absolute error provides the greatest insight into the generalizing
abilities of each model because the median is robust against outliers.
Within the test data exists the abnormal spike in water consump-
tion observed in June of 2019. The mean absolute error and the
RMS error are greatly swayed by the outlier. Any predicted increase
during the time of the spike results in a considerable reduction to
the errors given including a mean representation of the average.
The median absolute error, however, shares no such fluctuation to
the outlier.

6 CONCLUSION
TheHolts-Winter implementation of exponential smoothing achieved
the lowest score in both mean absolute error and RMS. The SARIMA
outperformed all other models in the remaining error calculation:
median absolute error. ARIMA served as a baseline as it underfitted
the training data and provided little more than a naive straight
line forecast relaying the last observed value. The LSTM failed to
generalize to the test set and performed the worst in all three error
calculations.

While the Holts-Winter exponential smoothing model achieved
the best performance in two of the three error assessments, the
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SARIMAmodel is the best of the testedmodels. The anomaly in June
of 2019 skewed the error calculations involving arithmetic means,
because the median absolute error does not share this quality, it
provides the most valuable insight to the best model. The SARIMA
model was observed through the test data to be the best considered
model, and as such, it was the model utilized in the future prediction
of New York City water conservation fromMarch 2020 to December
2025.
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