
Search Tree Experiments

Alex Blackwell – 301397565

November 2020

1 Introduction

The efficiency of the insert, remove, and search operations of a tree are pro-
portional to its height. A self-balancing tree such as an AVL (Adelson-Velskii
and Landis) tree ensures that the height never grows to be more than 2 log(N)
where N is the number of nodes in the tree. The effect of this self-balancing
property is that the insert, remove, and search operations of AVL trees can be
described asymptotically as log(N). The same is not true for a non-balancing
BST (Binary Search Tree). A BST can degenerate into a linked list if children
are either all decreasing or all increasing from the root. In this scenario, the
three considered operations become O(N) with N the number of nodes in the
tree.

The AVL tree asymptotic description implies it is more efficient than the
BST; however, the AVL operations are more complex, and it is unlikely for a
BST to have height proportional to its nodes when the operations and keys are
random.

This paper will consider randomly ordered insertions, deletions, and searches
of both trees where all operations operate with a random number. The random
order and equally likely sequence of inserted and deleted numbers imply the
average height of the BST is O(log(N))[1, pp. 141]. The considered operations
are proportional to the height, making the considered BST operations O(log(N))
on average. This matches the Big-Oh of the self-balancing AVL tree operations;
however, the BST operations are less complicated.

2 Testing Implementation

To generate data that suggests both the AVL tree and the BST insert, remove,
and search operations are asymptotically O(log(N)), these operation times were
averaged with an increasing number of nodes in the trees. Large trees take
longer to test than small trees, so data on small trees was emphasized with
large tree tests occurring less often. The smallest sized tree tested had at most
six thousand nodes, and the largest tree tested had at most ten million nodes.
Fourteen trees of sizes following the recurrence relation

1



Tn = Tn−1 + 2n + m, 4000 < m ≤ 5000, 5000 < T0 ≤ 6000, n > 0
are generated and tested between this lower and upper bound. This gives an
exponential distribution that emphasizes more tests on smaller, easier to test
trees. This recurrence relation has a margin of one thousand because of how
the sequence of operations is generated.

If the trees were given a long sequence of only one operation at a time, the
operation times would increase as the trees grow larger and decrease as the trees
lose nodes. Doing the three operations in any order would likely either under or
over represent the speed of the insert operation and over-represent the speed of
the remove operation. This is because it is expected that the operations become
slower as the trees grow larger. The insert operation increases the number of
nodes and the remove operation decreases the number of nodes. Testing of the
insert provides a baseline for a given tree size before or after the series of inserts;
this size, however, is certain to change with the remaining operations.

The method of performing operations on the trees was randomized as much
as possible. The method attempts to limit the long series of one operation
without, to an extent, disallowing a greater number of one operation if it is
to occur randomly. At each of the fourteen differing sizes of trees, a long se-
quence of operations is performed. This long sequence consists of a maximum
of five thousand of each operation. The three operations are equally likely to
be selected and performed once to both trees. If at any point an operation is
underrepresented by a margin of one thousand, the operation is performed to
both trees. This ensures that while the sequence of operations is largely left
to chance, they will not deviate by more than one thousand. When any one
of these three operations reaches five thousand, the sequence of operations is
complete for the current tree size.

When invoking any of the three operations on both trees, random numbers
were used. These numbers were integers ranging between [0, 10000000), as to
allow for a maximum-sized tree of ten million and to make repeatedly chosen
numbers typically uncommon, but possible as the trees grow larger. If a dupli-
cate number was chosen, the operation would attempt to use the duplicate key
on both trees.

3 Data Analysis

In general, the height of an AVL tree is at most roughly 1.44 log(N + 2)− 1.328
[1, pp.145]. By our data, this is true for every tree of differing sizes. The
randomness of the keys implies a height of O(log(N)) for the BST. This average
asymptotic prediction is supported by the data following a logarithmic trendline.

The self-balancing invariant in the AVL tree results in a tree of lesser height
when compared to the height of the BST. It is expected that a tree with less
height is faster to insert, remove, and search on because fewer comparisons
must be made to find the deepest node. It should also be noticed, however, that
the AVL tree Big-Oh is equal to the BST Big-Oh. This is because there are
constants n0, c > 0 for every n > n0, that the AVL Tree logarithmic trendline

2



Figure 1: Height of BST and AVL trees

is greater than the BST trendline and vice-versa. More specifically, considering
this data set, the BST height is 2.0868 times greater than the height of the AVL
tree overall.

What was seen in the analysis of the tree’s heights is echoed in the average
depths. Both tree’s average depths are supported by the data to be O(log(N))
asymptotically. When considering average depths, however, the difference be-
tween the AVL tree and the BST is not as drastic as with the differing heights.
This is likely because of the lack of a self-balancing invariant in the BST allows
for “skinny” subtrees with few nodes but great depth. The probability of having
“skinny” subtrees that add greatly to the height of the BST without influencing
the arithmetic mean towards a higher average depth is likely. The AVL tree av-
erage depth is not greatly different than the height of the AVL tree. This adds
to the evidence that the AVL tree is “short and bushy” because the majority of
the nodes are stored near the bottom of the tree.

Figure 2: Average depth

Considering this data set from these two trees, overall, the BST’s height is
1.9419 times greater than its average depth, and the AVL tree’s height is 1.2629
times greater than its average depth. Comparing the average depth of the BST

3



to the AVL tree, the BST’s average depth is 1.3571 times greater than that of
the AVL tree.

The average insertion and deletion times share many of the same qualities.
The data shows for both the BST and the AVL tree across all considered sizes,
the average insertion time and the average removal time is faster on the BST.
Both trees share a Big-Oh of O(log(N)) as supported by the data, however,
the BST performs faster than the AVL tree. From previous data analysis of
the BST height and average depth, the AVL tree had less height and a lower
average depth than the BST. However, the additional complexity of balancing
in the AVL tree increases the insertion and removal times by a factor C > 1
when compared to the BST average times.

Figure 3: Average insertion times

Considering this data set from these two trees, overall, the BST completes
the insertion operation an average of 1.4115 times faster than the AVL tree.

Figure 4: Average removal times

Considering this data set from these two trees, overall, the BST completes
the insertion operation an average of 1.4118 times faster than the AVL tree.

The search times for both trees are closer than the other operations with
the AVL tree being slightly faster on average. Both trees share a Big-Oh of

4



O(log(N)) where N is the number of nodes in the tree. The AVL tree search
times are faster than that of the BST because both the height and the average
depth of the AVL tree is less than the BST. The search operation traverses
through the tree making comparisons where the maximum number of com-
parisons made is proportional to the height; moreover, the average number of
comparisons made is the average depth of the nodes in the tree. This is the
first operation where the AVL tree is shown to be faster than the BST. This is
because the search implementation of both trees is identical implying the AVL
search operation does not have extra complexity.

Figure 5: Average search times

Considering this data set from these two trees, overall, the AVL tree com-
pletes the Search operation an average of 1.0898 times faster than the AVL tree.

Figure 6: Average operation times

5



The data from Figures 3, 4, and 5 are summarized showing their relative
average speeds. This graph shows the relative speeds of each operation. The
insertion and removal operations are similar considering the BST and AVL tree
independently, and when comparing the trees, the AVL tree performs these op-
erations slower. The search operation is the fastest of the three operations. This
result is to be expected because the insertion and removal operations perform a
search and also, modify the tree unless the key is a duplicate—which is unlikely
in this observational study.

4 Conclusion

For both the BST and AVL tree, the three operations operate in O log(N)) time
where N is the number of nodes in the tree. The additional complexity from
the self-balancing AVL tree makes the insertion and deletion times slower by a
constant factor C > 1. The AVL tree is of lesser height and has an average node
depth lower than the BST. The AVL tree having a lower average node depth
makes the average search run time lower than the BST’s average search time by
a constant factor 0 < C < 1.

The randomization of keys and sequence of operations resulted in both trees
being of height O log(N)) and the tested operations for both trees reflected a run
time of O log(N)). While the AVL tree was of lesser height and a lower average
node depth, insert and remove were faster on the BST with search being slightly
faster on the AVL tree.

5 Included Files

AVLTree.h

• The AVL tree implementation.

BinarySearchTree.h

• The Binary Search Tree (BST) implementation.

iplTest.cpp

• The testing program for obtaining data on the tree size, height, average
depth, as well as average insertion, removal, and search times.

• Tests trees of varying sizes with an emphasis on smaller trees spanning to
trees with a maximum size of ten million.

data.csv

• Generated file containing both BST and AVL tree data.

6



• Data includes tree size, height, average depth, as well as average insertion,
removal, and search times.

• Data includes the number of operations after obtaining a tree size and
performing a long sequence of operations.

ipl

• Executable file to run the tests generated from the command make all.

6 Data

BST Data
Number
of Oper-
ations

BST
Size

BST
height

BST
Average
Depth

BST
Average
Inser-
tion
Time

BST
Average
Deletion
time

BST
Average
Search
time

14887 5920 30 14.6231 0.001005 0.000803 0.000729
29736 12907 33 16.2152 0.001108 0.000878 0.000771
44651 21866 34 17.2845 0.001337 0.001063 0.000884
59580 34772 35 18.2461 0.001155 0.000928 0.000772
74183 55646 37 19.1791 0.001202 0.000990 0.000807
89009 92262 40 20.2087 0.001355 0.001111 0.000881
103766 160295 40 21.3198 0.001407 0.001183 0.000857
118716 290127 43 22.4909 0.001487 0.001270 0.000893
133403 540136 45 23.7313 0.001580 0.001383 0.000889
148242 1016454 48 24.9941 0.001658 0.001543 0.000924
163109 1893427 50 26.2411 0.001961 0.001786 0.001027
177877 3396629 53 27.4081 0.001822 0.001753 0.000945
192716 5616400 55 28.4143 0.001981 0.002014 0.001000
207544 8064407 58 29.1354 0.002017 0.002120 0.000989

Table 1: Data for BST

7



AVL Tree Data
Number
of Oper-
ations

AVL
Tree
Size

AVL
Tree
height

AVL
Tree
Average
Depth

AVL
Tree
Average
Inser-
tion
Time

AVL
Tree
Average
Deletion
time

AVL
Tree
Average
Search
time

14887 5920 14 10.8529 0.001495 0.001189 0.000710
29736 12907 16 12.0044 0.001601 0.001367 0.000710
44651 21866 16 12.7706 0.001906 0.001533 0.000813
59580 34772 17 13.4394 0.001684 0.001406 0.000735
74183 55646 18 14.1481 0.001797 0.001457 0.000786
89009 92262 19 14.8806 0.001952 0.001621 0.000789
103766 160295 20 15.6894 0.002029 0.001727 0.000808
118716 290127 21 16.5587 0.002126 0.001808 0.000815
133403 540136 22 17.4729 0.002218 0.001939 0.000821
148242 1016454 23 18.4238 0.002388 0.002094 0.000839
163109 1893427 24 19.3081 0.002657 0.002440 0.000894
177877 3396629 25 20.1679 0.002501 0.002387 0.000835
192716 5616400 26 20.9029 0.002702 0.002767 0.000898
207544 8064407 27 21.431 0.002689 0.002847 0.000895

Table 2: Data for AVL tree

8



References

[1] Mark Allen Weiss. Data Structures and Algorithm Analysis in C++ Fourth
Edition. Addison-Wesley, 2014. isbn: 0780132847377.

9


	Introduction
	Testing Implementation
	Data Analysis
	Conclusion
	Included Files
	Data

