
Quantum Circuits and Compilation

Grover’s Algorithm

Alex Blackwell, and Anonymous

April 10, 2023

1 Introduction

Quantum computing is a novel high-tech field in computer science that has,
in recent years, gained extreme popularity for its potential uses in computing
speedup. By the nature of qubits, one can create a superposition of an ex-
ponential number of states, which then run through the quantum algorithm
and return all possible outputs for said states.

However, this speedup is counterbalanced by the complexity of said al-
gorithms. For the most part, classical algorithms simply have better Big-O
complexity, resulting in no improvements when converting into quantum.
This has been one of the largest issues preventing mainstream adoption of
quantum computers.

But, there are a handful of niche algorithms that are capable of outper-
forming their classical counterparts. One such algorithm is Grover’s algo-
rithm. And despite its niche use cases, it has been utilized in many different
experiments to create quantum solutions to traditionally classic problems.

We provide an overview of Grover’s Algorithm at a high level and discuss
three papers in detail involving different applications of Grover’s Algorithm.
We present advantages and disadvantages of Grover’s algorithm in both the
general sense and with regards to the discussed papers.

2 Basics of Grover’s Algorithm

Grover’s algorithm is a search algorithm for randomly ordered elements of
size N. On a classical computer, an unstructured search has a time com-
plexity of O(N). Due to the nature of the elements being unstructured, a
classical algorithm must query—in the worst case—N elements to find the

1

Figure 1: A Deconstruction of Grover’s Algorithm [12]

desired element. In the average case, the classical algorithm can expect to
stumble across the targeted element after N/2 queries. However, due to the
nature of quantum mechanics, it has been shown that Grover’s algorithm
can be done with only O(

√
n) steps—a quadratic speed-up from classical

search [7]! At a high level, Grover’s algorithm has four steps:

1. Initialization. Set equal likelihoods of being the target for all ele-
ments.

2. Oracle. Verifies if an element is the target for each element.

3. Amplitude amplification. Amplify the likelihood of the target be-
ing found correctly.

4. Measurement. Select one of the elements (hopefully the target that
we amplified).

2.1 Initialization

Because of the benefit superposition has to the quantum speedup, this is
a relatively simple but vital step. Simply apply the Hadamard onto all n
qubits [7]. In most literature, this is indicated as H⊗n

This creates an equal superposition of all computational states on each
qubit, which represents an item in the search space [11]. This illustrates the
uncertainty of the qubit’s real state or what it represents in a given scenario
[7]. See Figure 1.

2.2 Oracle

Sometimes a solution can be verified asymptotically faster than it can be
found. Imagine the simple example where there is one “target” element in

2

N unstructured elements. To find the target element each of the N elements
must be queried (in the worst case); to verify if an element is the target,
however, only one query must be performed. The oracle realises the idea of
replacing “finding the solution” with “verifying the solution.” [7]

The function of an oracle can be represented as a matrix. The matrix is
the NxN identity except for element uii, which is negative for target i. The
following matrix shows the general structure for such a matrix [7].

U =

−1f(0) 0 . . .
...

. . .

0 −1f(N−1)

If the function f(ui) is 1 for the target element and 0 otherwise, then the

matrix U will be in the form of an oracle. So, the function f(ui) does not
need to solve the entire search problem; instead, f(ui) only needs to verify
if ui is the target for each element ui in U [7].

2.3 Amplitude Amplification

The purpose of Amplitude amplification is to amplify the likelihood of mea-
suring the target state. In this context, the “amplitude” of a state refers to
the probability of the state being measured.

The initialization of states in Grover’s algorithm creates a superposition
where the likelihood of measuring any one state is equal. That is: the
element ui will be measured with probability 1/N for each ui in U . After
the oracle is applied to the states, the target amplitude is negative while
all other state amplitudes remain the same. The target state can now be
amplified by applying the Grover diffusion operator G (see Figure 1). The
Grover operator intuitively flips each amplitude around the average. Recall
that since the negative target state brings the average amplitude down, all
non-target states are reduced and the target state is increased by about 3
times its original value [7]. The result of applying the Grover operator is
the target state is amplified.

Each time the Grover operator is applied, the target state is amplified
more. It turns out that applying the Grover operator O(

√
N) times—or

O(
√
N/M) times for M targets—is sufficient amplification of the target

state to obtain the correct answer at measurement time with high certainty
[7].

3

2.4 Measurement

Measurement collapses the superposition of qubits into a single state. Due
to the repeated application of the Grover diffusion operator, the amplitude
of the target state is much more likely to measure than any other state. So,
the measured state in the final step of applying Grover’s algorithm is the
target state with arbitrarily high certainty [7].

3 Paper Summaries

3.1 Quantum Secret Sharing Based on Quantum Search Al-
gorithm [10]

Quantum Secret Sharing (QSS) combines quantum mechanics with sharing
of secrets between agents [10]. For the sake of simplicity, we will consider
“secrets” to be a single target qubit. To fix ideas, say Alice wants to send
Bob her favourite secret number from zero to three. That is: Alice must
send Bob one of {|00⟩, |01⟩, |10⟩, |11⟩}. QSS keeps Alice’s answer a secret
by encoding her response and splitting it into many parts before sending the
parts to different agents. The agents alone—with only a fraction of Alice’s
response—cannot determine the message’s contents; however, by combining
the pieces and decoding the result Alice’s message can be understood [10].

The Hsu QSS protocol uses three different states (1) the carried state,
(2) the encoded state, and (3) the key state [10]. The carried state |Si⟩ is
randomly chosen and will “carry” the transmitted information. To extend
the example of Alice and Bob, the transmitted information is Alice’s secret
number, and the carried state will (eventually) contain this information.
The encoded state |Si⟩w encodes the transmitted information into the carry
state. Encoding helps ensure Alice’s secret number is kept a secret. The
key state a|w⟩ is obtained after applying decoding to |Si⟩w. The key state
consists of phase a and the target qubit |w⟩—Alice’s secret number.

To illustrate the encoding and decoding process, let Alice’s favourite
secret number from 0 to 3 be 2; so, Alice wants to send Bob the state
|10⟩. Initial states are constructed similarly to how initialization is done in
Grover’s Algorithm. Each initial state (size 4 qubits) is a tensor product
of individual states (2 qubits). Put explicitly for our example, there are 16
initial states each of which is a tensor product of the following individual
states: 1/

√
2(|0⟩+ |1⟩), 1/

√
2(|0⟩ − |1⟩), 1/

√
2(|0⟩+ i|1⟩), 1/

√
2(|0⟩ − i|1⟩).

After initialization is complete, a carrier state must be selected at random.
Let our initial state be |S1⟩ = 1/2(|00⟩+ |01⟩+ |10⟩+ |11⟩). With the carrier

4

state selected, Alice’s secret number of 2 can be encoded therefore making
the encoded state. To encode Alice’s secret number 2, apply the encoding
operator US1 = I − 2|S1⟩⟨S1| to |S1⟩ to get the encoded state |Si⟩10. To
decode the message and obtain Alice’s secret number, the decoding operator
−US1 = 2|S1⟩⟨S1| − 1 must be applied to |Si⟩10.

With an understanding of how encoding and decoding work, the Hsu
protocol can be introduced. Consider a 2-qubit example involving 2 addi-
tional agents to transmit Alice’s secret: Bob and Charles. The Hsu protocol
works as follows [10].

1. Alice randomly prepares some carrier state |Si⟩ and applies encoding.

2. Alice sends one of the encoded qubits to Bob and the other to Charles
who both announce publicly what they got.

3. Alice confirms they have received the qubits.

4. Alice announces her |Si⟩ publicly.

5. Bob and Charles combine their qubits and perform −USi to determine
the secret |w⟩.

The Hsu QSS is related to Grover’s Algorithm because the protocol is
fundamentally one iteration of Grover’s Algorithm [10]. Initialization is
done by Alice, the encoding operator USi is the oracle, −USi is the diffusion
operator, and measurement is conducted by Bob and Charles.

3.2 Solving Binary MQ with Grover’s Algorithm [8]

The multivariate-quadratic or MQ problem is a hard problem within cryp-
tosystems and is considered NP-Complete. However, solutions can be brute-
forced using enumeration. For classical computing, this takes Θ(2n), where
n is the number of variables. Grover’s algorithm improves the runtime of
classical computation to Θ(2n/2) given that these equations are over F2. To
accomplish this task, an arbitrary Oracle is required; Peter Schwabe Bas
Westerbaan offer two such oracles [8]. Henceforth, their research will be
referred to as MQ Grover. Additionally, MQ Grover illustrates that far
less than 1000 logical qubits are needed to break cryptographic schemes [8].

Before discussing the oracles, the MQ problem will be briefly defined to
establish background knowledge. The MQ problem’s goal is to find values
(x1, x2, ..., xn) such that a system of m equations has a solution, with each

5

equation 1 ≤ k ≤ m defined as∑
1≤i,j≤n

λi,jxixj = vk, λi,j = ”cube” ∈ F2 [8]

However, these equations can be rewritten into “convenient form.” This form
still holds a regular system, but with a new restriction that λi,j = 0 in all m
equations when i > j. This transformation can be done to any system by
adding a new equation Em−1 and variable xn+1, and redefining the “cubes”
as follows, where 1 ≤ i, j ≤ n+ 1 and 1 ≤ k ≤ m [8]:

λ
′
i,j ∈ Ek =

λi,j i = j ≤ n
λi,j + λj,i i < j ≤ n
1 + vk i = j = n+ 1
0 otherwise

λ
′
i,j ∈ Em+1 =

{
1 i = j = n+ 1
0 otherwise

Notice that xn+1 = 1, thus λ
′
n+1,n+1 = vk +1 to preserve the original equal-

ity in the system [8]. Using these convenient forms allows for a simpler
translation into quantum circuit solutions, as is therefore the system used
henceforth when discussing circuits solving systems of quadratics.

The first oracle is simple yet effective. It requires n + m + 2 qubits,
where n = number of variables, and m = number of equations, in convenient
form. The n bits are the input variables, the m bits hold the results of the
equations, |t⟩ is used for intermittent storage and, |r⟩, holds |1⟩ iff a solution
is found. The m + 2 bits are all initialized to |0⟩. It takes, at most, n2 +2n
gates to calculate an equation and put the results into its respective qubit
[8]. As there are m such qubits, equation calculation takes m(n2 + 2n).
Then to confirm if all equations are satisfied, a multiply controlled Toffoli
gate is used to send E1 ∗ E2 ∗ ... ∗ Em to |r⟩. Notice that |r⟩ can only be
1 if every equation is satisfied. As this is a quantum circuit, the gates and
calculations must be reversed. This takes m(n2 + 2n) gates [8]. Thus, the
maximal number of gates used for this oracle is 2m(n2+2n)+1. As neither
the equations nor the components of the equations are calculated in parallel,
it is clear that the circuit depth is O(n2m) [8]. By adding more qubits to
allow for more parallelization, the depth can be reduced to O(n+m) using
n2 +m bits [8].

The second oracle is more complex and thus has a more abstract defini-
tion. To minimize the logical qubits used, a counter and increment function

6

are utilized. This reduces the register usage down to n+ ⌈log2m⌉+ 3. The
⌈log2m⌉ registers act as a counter and are incremented if an equation is
satisfied. This means that each equation will have to be computed and un-
computed twice—leading to double the number of gates [8]. MQ Grover
notes that increment circuits are costly without ancillas, and thus uses the
cyclical nature of qubits upon certain circuits to create their own increment
circuit [8]. The researchers illustrate that this can be accomplished by pick-
ing a primitive polynomial p(x) over F2 of degree c, where c = ⌈log2m⌉ and
building the corresponding circuit made of up, at most, 2c − 3 gates [8].
Finally, the oracle checks whether the value in the counter is m, done by a
single multiply-controlled Toffoli and up to m X gates. Thus, the total gates
used for this oracle are 4m(n2 +2n) +m(2c− 3)+m+1 [8]. Note that due
to the focus on minimal register usage, rather than complexity, this oracle’s
circuit depth is not focused upon or discussed.

To prove the validity of their findings, MQ Grover examined their or-
acles’ resources upon 84 equations in 80 variables with a single solution,
known as the “80-bit secure” parameters. The basic oracle used 168 qubits
with approximately 1.4 ∗ 1018 gates, while the minimal register oracle used
only 90 qubits and 2.8 ∗ 1018 gates [8].

3.3 Quantum Fuzzy K-Means Algorithm Based on Fuzzy
Theory [3]

The K-Means algorithm is a classical algorithm used to cluster similar data.
Consider n objects where each object xi is a d-dimensional vector on a
euclidean vector space. In this context, “similarity” is defined as the distance
between objects, the idea being: similar objects are close together. The K-
Means algorithm finds k clusters where objects are closer to the cluster they
belong to, than any other cluster. Each of the k clusters has a representative
object called the centroid. The centroid is updated at each iteration of the
K-means algorithm as the mean of all the objects in the centroid’s cluster.
The K-means algorithm is as follows.

1. Randomly select k objects as the initial centroids.

2. For each data point xi for i = 0 to n, calculate the similarity to each
k centroids and assign xi to the cluster of the most similar centroid.

3. Update centroids based on the potentially new cluster memberships.

4. If the end condition is met then stop, otherwise go back to step 2.

7

Grover’s algorithm can be applied to step 2 to find the most similar
centroid [3]. The reassignment of objects to clusters without using Grover’s
algorithm is O(nk); however, Grover’s Algorithm can reduce the computa-
tional complexity to O(n

√
k) [3].

Grover’s algorithm can be introduced into K-means by augmenting the
algorithm as follows [3].

1. Randomly select k objects as the initial centroids.

2. For each data point xi for i = 0 to n, calculate the similarity to each
k centroids using a control-SWAP circuit.

3. For each similarity use phase estimation to store similarities in qubits.

4. Use Grover’s Algorithm to find the most similar cluster for each object.

5. If the end condition is met then stop, otherwise go back to step 2.

The control-SWAP circuit calculates the similarity between xi and each k
centroids |c⟩. Phase estimation is used to store the degree of similarity be-
tween xi and |c⟩ in the qubit |a⟩. The result of constructing |a⟩ is the oracle
since Grover’s Algorithm is given a hint of what the target is. Applying am-
plitude amplification

√
k times is sufficient to find the most similar centroid

to xi [3].

4 General Advantages of Grover’s

The most significant advantage of Grover’s Algorithm over classical unstruc-
tured searching algorithms is the computational speed-up. Grover’s Algo-
rithm provides a method in which to reduce the asymptotic complexity of
classical searching algorithms quadratically. The algorithm creates a su-
perposition that can find a target element in an unstructured sequence of
elements in O(

√
n)—compared to the classical complexity of O(n).

A major reason for the popularity of Grover’s algorithm is how common
it is required to search an unstructured set of data. Quantum Secret Sharing
[10], binary MQ [8] and fuzzy K-Means [3] differ drastically as algorithms;
however, they all share the same quadratic speed-up from applying Grover’s
Algorithm to an unstructured search subroutine. The three problems have
or construct the property of having a solution that is much easier to verify
than it is to solve. Such a property is common in many algorithms and is
another reason for the popularity of Grover’s Algorithm.

8

Grover’s Algorithm allows unstructured search problems to be expressed
as verifying a solution rather than solving the problem directly. As an in-
tuitive example, consider solving a Sudoku puzzle [6]. A provided puzzle
can be verified as correct if it follows the rules of a valid Sudoku puzzle.
That is: the row and column constraints are met for the puzzle. Verifying
the correct solution given a puzzle is simpler than finding the solution since
finding such a solution may require searching through all the possible states
of the puzzle. For cases such as the Sudoku puzzle, being able to express
a search problem in terms of verifying many possible solutions is beneficial.
An otherwise difficult problem is intuitively simplified and, in the process,
sped up computationally. However, not all problems can be easily expressed
as verifying a solution. In such cases—such as the ones discussed in section
5.3.—developing the Oracle proves more challenging than intuitive. Regard-
ing Quantum Secret Sharing, binary MQ, and fuzzy K-Means no algorithm
was simplified due to the intuition of the Oracle.

BinaryMQ and fuzzy K-Means share the advantage of a quadratic speed
up from applying Grover’s Algorithm to a subroutine involving unstructured
searching. For example, to improve the computational complexity of Binary
MQ from Θ(2n) to Θ(2n/2), Grover’s algorithm decreases the run time of an
unstructured search from O(n) to O(

√
n). The speed-up of K-Means from

the application of Grover’s Algorithm is similar to that of Binary MQ.
K-Means requires searching for the most similar centroid for each object
in order to converge on clusters. This unstructured search was able to be
performed quadratically faster by using Grover’s Algorithm than is possible
with classical computation.

While the asymptotic time complexities improved for Binary MQ and
fuzzy K-Means with the application of Grover’s Algorithm, the same is not
true for Quantum Secret Sharing. Instead of speeding up the algorithm
compared to its classical counterpart, Grover’s Algorithm provides a frame-
work in which secrets can be shared in a quantum space. So, the advantage
of Grover’s algorithm is unique for Quantum Secret Sharing since it did not
speed up or provide intuition for solving a subroutine. Instead, Grover’s Al-
gorithm is the foundation that is adapted to the context of sharing secrets
to produce the Hsu protocol.

5 General Disadvantages of Grover’s

Since Grover’s Algorithm is a quantum algorithm it is limited by the short-
comings of quantum computing. Such limitations include a high error rate

9

driving the necessity of error correction and fault tolerant gates. A disad-
vantage of the papers is they suffer from an inaccurate—or lack of—gate
and ancilla cost analysis. Finally, a valid Oracle must be constructed and
this is not always trivial.

5.1 Error-Correcting and Fault Tolerance

Fault Tolerance and Error-Correcting are very frequently discussed topics
within Quantum Computing. This is because, where classical computing has
an error rate of 10−17 per operation, quantum computing has an error rate of
10−2 per gate—which is an extremely large increase [1, Lec. 7]. Considering
the number of operations required within a circuit to apply a non-trivial
algorithm or function, this indicates that many if not all quantum circuits
will fail due to noise and error, giving incorrect results.

However, this can be mitigated by using a specific gate set that is fault-
tolerant and/or can be implemented transversally. Fault-tolerant gates are
those gates that do not propagate error qubits [1, Lec. 7]. Transversal
gates are those that can be broken down simply into single-qubit unitary
gates, and is thus a series of Fault-Tolerant gates [1, Lec. 7]. By using such
gate sets, alongside quantum error correcting codes that can guarantee to
correct singular errors, one can ensure the algorithms runs without issue,
by The Threshold Theorem [2]. This theorem proves that if the probability
of failure per gate is below a hardware threshold, correcting errors during
calculation ensures algorithms run with high levels of success, and that this
correction is efficient as only a poly-logarithmic number of gates are added
to the circuit [2]. Thus, by using Fault-Tolerant sets we can ensure Grover’s
runs correctly and continues to have quantum speedup.

One of the most popular universal gate sets with this feature is Clifford +
T. The Clifford gates {H,CNOT, S} can all be implemented transversally,
and T can be implemented fault-tolerantly. However, this requires building
a “magic state” ancilla and utilizing teleportation, which is extremely costly
[1, Lec. 7]. Due to the universality of this set, it is a common gate set to
see in many research papers when examining quantum circuits as this is a
well-known flaw.

In the aforementioned papers, it is clear that this flaw within Grover’s
algorithm and quantum circuits, in general, was considered, despite not
being mentioned explicitly. Within Grover’s general algorithm, the diffusion
operator can be implemented regardless of oracle with a series of X, H,
i = i(|00⟩ + |11⟩), and Toffoli gates [4]. And each of said gates can be
decomposed into Clifford + T trivially. Thus, it suffices to examine the

10

oracles themselves.
In Quantum Secret Sharing Based on Quantum Search Algorithm [10],

there is no mention of circuit construction, but given the definition of US1

and US1 for arbitrary |Si⟩ and |w⟩, it is clear these can be made fault-
tolerantly.

Within MQ Grover, only a small subset of possible gates are used:
{CNOT , Toffoli, X, n-bit Toffoli, SWAP} [8]. Each gate in said subset
can be defined within Clifford + T trivially or is explicitly a gate in Clifford
+ T. CNOT is an element of Clifford, Toffoli and n-bit Toffolis can be
written with a series of H,T, and CNOT gates, X = HZH = HSSH,
where H and S are gates within Clifford, and SWAP is equivalent to 3
CNOTs sequentially. Thus, the authors clearly recognized the requirement
of fault-tolerance within their gate set and worked around it.

Finally, within Quantum Fuzzy K-Means Algorithm Based on Fuzzy The-
ory [3], Phase Estimation is used as the oracle, and involves H and SWAP
gates, a controlled global-phase gate U , which adds a phase of e2πiθ, and
QFT−1. U , as a controlled global-phase gate, can be implemented through
a series of S and T gates, based on θ. QFT−1 is a more complex calculation,
but is well-known to use n H gates and n(n − 1)/2 phase gates, where n
is the number of input bits [1] [9]. Again, these phases can be recreated
with T and S gates, allowing for fault-tolerant gates, but comes at a signif-
icant cost as these phases do not directly translate and involve some error
estimation of said phase gates—which, depending on hardware, may still
result in error-prone results [1]. In this regard, Quantum Fuzzy K-Means
Algorithm Based on Fuzzy Theory [3] seems cognizant of this issue within
Grover’s algorithm but either chose to dismiss the issue in favour of focus-
ing on results, or determined the target audience would already be domain
experts and therefore explaining the faults of such a well-known operation
redundant.

5.2 Lack of Accurate Gate/Ancilla Cost Analysis in Usage

As mentioned briefly in other sections, this cost and understanding of gates
and ancillas within these papers was either severely under-discussed or missed
altogether. Due to this lack of discussion, many of the gate and ancilla cal-
culations can be considered faulty at best, or incorrect at worst. This issue
primarily occurs when Toffoli gates are used within circuits. As Quantum
Secret Sharing Based on Quantum Search Algorithm [10] lacks any discus-
sion of gates or ancillas entirely, it cannot be analyzed within this section.

MQ Grover ’s first oracle uses nm standard Toffoli gates to calculate

11

and stores all equations into their respective qubits, an m-qubit Toffoli to
evaluate the equations for a solution, and then nm standard Toffoli gates to
decompute the equations [8]. The issue here lies within the expensive nature
of Toffoli gates; a Toffoli gate can be rewritten as Clifford + T exactly,
using 7 T -gates, and 2 H gates alongside 6 CNOT gates as seen in Figure
2. Additionally, in the examination of n-controlled bit Toffoli cost, MQ
Grover explicitly states “If one allows one ancillary qubit, one only needs
O(n) many 2-qubit gates to construct a n-qubit Tofolli gate” [8]. In the
referenced paper [5], controlled-V gates were used, which can be constructed
by Clifford + T as seen in Figure 3.

Figure 2: Toffoli Deconstruction into Clifford + T Gateset [13]

Figure 3: Controlled-V Deconstruction into Clifford + T Gateset [5]

In total, 32n− 96 elementary (being single-qubit or controlled-V) gates
with a single garbage ancilla are required for an n-controlled bit Toffoli
construction [5]. To break it down further, 8n− 24 of said elementary gates
are CNOTs, meaning 24n − 72 are controlled-V [5]. As each controlled-V
gate has 7 Clifford + T gates within it, the final breakdown for n-qubit
Toffoli would be: 8n − 24 + 168n − 504 = 176n − 528 Clifford + T gates.
Through this gate-deconstruction, it is clear the simple gate estimation of
2m(n2+2n)+1 with n+m+2 bits does not illustrate the true cost; Toffoli
gates are more complex, and an n-qubit Toffoli even more so, so cannot be
treated as equal cost to less-complex gates. This is also true of intermediate
ancillas used. A more accurate value for Oracle 1 would be: n + m + 3
registers, and 2m(n2 + 17n) + 176n - 528. The same breakdown can be

12

done for Oracle 2. However, because the final Toffoli in Oracle 2 is c-bit, the
cost is far lower. Thus, the original estimation of n+ ⌈log2m⌉+ 3 bits and
4m(n2 + 2n) +m(2c− 3) +m+ 1 gates is also inaccurate. n+ ⌈log2m⌉+ 4
bits and 4m(n2 + 17n) +m(2c− 3) +m+ 176c - 528, where c = ⌈log2m⌉
is more precise.

Finally, because T gates require preparation alongside magic states and
teleportation to be fault-tolerant, it would be preferred to separate the Clif-
ford gates from the T gates when discussing total gate cost and gate depth.
However, given complex decompositions such as this, it is understandable
why they were avoided by MQ Grover.

Quantum Fuzzy K-Means Algorithm Based on Fuzzy Theory [3], unlike
MQ Grover puts minimal effort within the paper itself to examine gate or
ancilla cost. In fact, the paper omits this category entirely when examining
the results of their findings. Instead, a brief illustration of Time and Space
complexity is chosen as their evaluation metrics. However, Space complexity
can be seen as analogous to bit usage. In this use case, it has been found that
a data point xi = {xi1, xi2, ..., xid} needs only 2 + log2d qubits, while the k
clusters require 2+ log2d+ log2k qubits [3]. Thus, in total 4+2log2d+ log2k
bits are required to find the cluster for point xi, and n(4 + 2log2d + log2k)
bits are required to find the clusters for all n data points. Given the lack of
additional ancilla use in QFT and gate U , this is indeed accurate. But, as
there is no in-depth discussion of any sort about gate cost, it is evident the
Quantum Fuzzy K-Means Algorithm Based on Fuzzy Theory [3] had little to
no concern for this issue.

To summarize, these papers seem to be indicative of a problem when us-
ing Grover’s algorithm for real-world problems: there is a fundamental lack
of deep, accurate analysis of gate and ancilla cost. This may be because
the focus of such papers lies primarily within the application. However,
application should not come at the expense of efficient, accurate implemen-
tation. And when using expensive implementation, it is vital to discuss or
even briefly mention this expense if it is not obvious—such as the cost of
n-qubit Toffolis being far more than a standard gate, or the extensive use of
T gates to approximate certain phase gates. Without this, certain findings
may be inappropriate or hide the true cost.

5.3 Oracle Definition

The Oracle within Grover’s algorithm is the linchpin of the entire circuit, and
must be customized for every new use-case of the algorithm. However, by the
requirements of oracle construction being Fault-Tolerant, and of the specific

13

form discussed in 2.2, this can be difficult to construct. As a reminder,
Oracle O can be seen as a circuit that transforms |x⟩|y⟩ to |x⟩|y ⊕ f(x)⟩
[11]. This means knowing the definition of f(x)—where f(x) = 1 when x
is a solution, and f(x) = 0 otherwise—a priori. In many scenarios, for an
arbitrary x, this may be difficult or impossible to do. Additionally, even if O
were to be an oracle for an input size of n, it may need to be reworked entirely
if the input size is altered in any way. The best way to ensure O works is
to convert f(x) to a binary mathematical problem, and build O according
to f(x). Thus, Grover’s usage is severely limited to those problems which
fit the niche criteria required to build a solid Oracle circuit. In MQ Grover
[8] and Quantum Fuzzy K-Means Algorithm Based on Fuzzy Theory [3], the
oracles were mathematically defined. However, Quantum Secret Sharing
Based on Quantum Search Algorithm [10] relies on Alice knowing the secret
and building her oracle a priori, and informing Bob and Charles of her |Si⟩.
This is one of few problem spaces where the knowledge of the solution is
known beforehand, and allows for this build method for O

Another limitation lies in the ability to translate a given problem into
n binary bits. For many problem spaces, this translation is non-trivial and
requires a precise, thought-out method to convert the search space to n
qubits. Compared to classical computing, where there is little to no need to
translate search spaces into bits to locate a solution, it may not be worth
the effort. Generally speaking, Grover’s algorithm may be best for problem
spaces where the search space can be easily converted or limited to a binary
scope. In Quantum Secret Sharing Based on Quantum Search Algorithm
[10], this can be done by converting the secret into a binary representation
and thusly creating the oracle and diffusion circuits. MQ Grover [8] limits
the system of equations to F2, allowing for only binary xi and Ei values.
And Quantum Fuzzy K-Means Algorithm Based on Fuzzy Theory [3]s uses
clustering scoring, where scores act as a bit’s amplitude, and ∈[0,1].

An example of an unsorted search space that does not have these fea-
tures and therefore cannot be solved by Grover’s but can be by a classical
algorithm would be to find if there is an ace of spades within a poker player
A’s 5-card hand. A classical computer would simply check each of the five
cards for an ace of spades and return the index, or −1 if not found. But
because there is no way to translate the quality of “ace of spades” to a spe-
cific qubit in a cost-efficient manner, no oracle can be constructed. If one
were to know the index of the card beforehand, say 3 (4th card), then oracle
O could be built. However, if the index is known, there is no need to use
Grover’s to find the card as it has already been found!

14

6 Conclusion

Grover’s Algorithm is a popular algorithm in quantum computing due to
its quadratic speed-up in unstructured search. Algorithms commonly have
unstructured search subroutines that are candidates for a speed-up from
applying Grover’s Algorithm. Three such applications of Grover’s Algo-
rithm discussed in detail are Quantum Secret Sharing, binary MQ, and
fuzzy K-Means. All three algorithms constructed a valid Oracle and share a
quadratic speedup in the unstructured search procedure. While Grover’s Al-
gorithm provides a faster alternative to classical unstructured search it also
comes with disadvantages. The algorithm is victim to the shortcomings of
quantum computing such as the need for fault-tolerant or transversal gates.
Further, an accurate number of ancillas and each type of gate necessary
for quantum algorithms must be considered to guide efficient implementa-
tions. Additionally, Grover’s Algorithm comes with the unique complication
of constructing a correct Oracle for verifying solutions. So, Grover’s algo-
rithm provides an opportunity to speed up algorithms involving unstruc-
tured searching; however, when adopting Grover’s algorithm into real-life
applications the overhead of quantum computing should be considered.

References

[1] Matt Amy. Lecture notes in CMPT 409/981: Quantum Circuits and
Compilation. 2022. url: https://www.cs.sfu.ca/~meamy/f22/
cmpt981/.

[2] Daniel Gottesman. An Introduction to Quantum Error Correction and
Fault-Tolerant Quantum Computation. 2009. doi: 10.48550/ARXIV.
0904.2557. url: https://arxiv.org/abs/0904.2557.

[3] Min Hou, Shibin Zhang, and Jinyue Xia. “Quantum Fuzzy K-Means
Algorithm Based on Fuzzy Theory”. In: Artificial Intelligence and Se-
curity. Ed. by Xingming Sun et al. Cham: Springer International Pub-
lishing, 2022, pp. 348–356. isbn: 978-3-031-06794-5.

[4] C. Lavor, L. R. U. Manssur, and R. Portugal. Grover’s Algorithm:
Quantum Database Search. 2003. doi: 10.48550/ARXIV.QUANT-PH/
0301079. url: https://arxiv.org/abs/quant-ph/0301079.

[5] D. Maslov and G.W. Dueck. “Improved quantum cost for n-bit Toffoli
gates”. In: Electronics Letters 39.25 (2003), p. 1790. doi: 10.1049/el:
20031202. url: https://doi.org/10.1049%2Fel%3A20031202.

15

[6] Ankur Pal et al. “Solving Sudoku game using a hybrid classical-quantum
algorithm”. In: EPL (Europhysics Letters) 128.4 (2020), p. 40007.

[7] IBMQuantum.Grover’s algorithm. url: https://quantum-computing.
ibm.com/composer/docs/iqx/guide/grovers-algorithm.

[8] Peter Schwabe and BasWesterbaan. “Solving BinaryMQ with Grover’s
Algorithm”. In: Security, Privacy, and Applied Cryptography Engi-
neering. Ed. by Claude Carlet, M. Anwar Hasan, and Vishal Saraswat.
Cham: Springer International Publishing, 2016, pp. 303–322. isbn:
978-3-319-49445-6.

[9] The Qiskit Team.Quantum Fourier transform. url: https://qiskit.
org / textbook / ch - algorithms / quantum - fourier - transform .

html.

[10] Hsin-Yi Tseng et al. “Quantum Secret Sharing Based on Quantum
Search Algorithm”. In: International Journal of Theoretical Physics
51.10 (Oct. 2012), pp. 3101–3108. issn: 1572-9575. doi: 10.1007/
s10773-012-1191-x. url: https://doi.org/10.1007/s10773-
012-1191-x.

[11] George F. Viamontes, Igor L. Markov, and John P. Hayes. Is quantum
search practical? url: https://arxiv.org/abs/quant-ph/0405001.

[12] Wikipedia, the free encyclopedia.Grover’s algorithm. 2022. url: https:
//en.wikipedia.org/wiki/File:Grover’s_algorithm_circuit.

svg.

[13] Wikipedia, the free encyclopedia. Toffoli gate. 2022. url: https://
en.wikipedia.org/wiki/File:Qcircuit_ToffolifromCNOT.svg.

16

